O-Demethylation and Sulfation of 7-Methoxylated Flavanones by Cunninghamella elegans.
نویسندگان
چکیده
منابع مشابه
O-demethylation and sulfation of 7-methoxylated flavanones by Cunninghamella elegans.
Metabolism of 7-O-methylnaringenin (sakuranetin) by Cunninghamella elegans NRRL 1392 yielded naringenin and naringenin-4'-sulfate. C. elegans also converted 5, 3', 4'-trihydroxy-7-methoxyflavanone into eriodictyol-4'-sulfate. Furthermore, incubation of 5, 4'-dihydroxy-7, 3'-dimethoxyflavanone with the same fungus gave homoeriodictyol (5, 7, 4'-trihydroxy-3'-methoxyflavanone) and homoeriodicytol...
متن کاملBiotransformation of mirtazapine by Cunninghamella elegans.
The fungus Cunninghamella elegans was used as a microbial model of mammalian metabolism to biotransform the tetracyclic antidepressant drug mirtazapine, which is manufactured as a racemic mixture of R(-)- and S(+)-enantiomers. In 168 h, C. elegans transformed 91% of the drug into the following seven metabolites: 8-hydroxymirtazapine, N-desmethyl-8-hydroxymirtazapine, N-desmethylmirtazapine, 13-...
متن کاملTransformation of amoxapine by Cunninghamella elegans.
We examined Cunninghamella elegans to determine its ability to transform amoxapine, a tricyclic antidepressant belonging to the dibenzoxazepine class of drugs. Approximately 57% of the exogenous amoxapine was metabolized to three metabolites that were isolated by high-performance liquid chromatography and were identified by nuclear magnetic resonance and mass spectrometry as 7-hydroxyamoxapine ...
متن کاملFungal metabolism of acenaphthene by Cunninghamella elegans.
The filamentous fungus Cunninghamella elegans ATCC 36112 metabolized within 72 h of incubation approximately 64% of the [1,8-14C]acenaphthene added. The radioactive metabolites were extracted with ethyl acetate and separated by thin-layer chromatography and reversed-phase high-performance liquid chromatography. Seven metabolites were identified by 1H nuclear magnetic resonance, UV, and mass spe...
متن کاملBiotransformation of doxepin by Cunninghamella elegans.
A filamentous fungus, Cunninghamella elegans ATCC 9245, was used as a microbial model of mammalian metabolism to biotransform doxepin, a tricyclic antidepressant drug. Doxepin is produced as an 85:15% mixture of the trans- (E) and cis- (Z) forms. After 96 h of incubation in Sabouraud dextrose broth, 28% of the drug was metabolized to 16 metabolites. No change in the trans- (E) and cis- (Z) rati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chemical and Pharmaceutical Bulletin
سال: 2003
ISSN: 0009-2363,1347-5223
DOI: 10.1248/cpb.51.203